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1. Introduction 
 
 Social science is rife with polarities, defined by the Oxford English Dictionary as ‘the 
possession or exhibition of two opposite or contrasted aspects, principles, or tendencies.’  There 
is the fundamental polarity inherent in all empirical science between data and theory – in John 
Locke’s phrase, ‘experience and reflection on experience.’  There is a polarity between the micro 
and macro levels of analysis [Courgeau [2004] speaks of ‘une opposition macro-micro’] with at 
best partial synthesis of the two. 
  
  In some of the social sciences, notably sociology and political science, there are polarities 
between quantitative and qualitative research, between empirical research and critical analysis, 
and between value-free and explicitly ideological social science.    
 
  Less widely discussed are polarities involving different methodological traditions within 
quantitative social science.  These affect many scientific disciplines, including demography.  They 
have led to tension and at times hostility, thereby weakening empirical social science in its central 
tasks, and in its confrontations with post-modernist critics and old-fashioned radical positivists.  
Not least of these is the polarity between statistical modelling, viewed as the fitting of models to 
observational data, and computer modelling [simulation], viewed as an attempt to represent some 
portion of the real world, or some theory about the real world, in a way that goes beyond 
observational data.  The statistician Adrian Raftery, paraphrasing C.P. Snow, refers to ‘two main 
cultures of quantitative research – statistical modeling and deterministic simulation models…’ 
noting that the proponents of the two approaches seldom interact [see Raftery, 2004].   
 
 In this paper, I examine the last-mentioned polarity as it manifests itself in demography 
and related empirical social sciences. My central argument is that statistical modeling and 
computer simulation are best viewed as complementary not competing modes of analysis.  I 
attribute much of the tension between the two approaches to a continuing misunderstanding of 
the interrelations among data, models, theory and reality, and to confusion about the 
epistemological character of different kinds of demographic analysis [Burch, 2003d]. A particular 
focus is on the failure to recognise that it is not the form of an analytic tool, but its application, 
the use to which it is put, that determines the epistemological character of an analysis.   
 
 Viewed in this light, much of the tension surrounding simulation and statistical modelling 
derives from the fact that the two approaches naturally tend toward different uses, simulation 
toward theoretical analysis, and statistical modelling toward empirical analysis.  The polarity is at 
base the familiar polarity between theory and experiment – or, viewing science as a human 
institution, between theorists and empiricists -- still very much unresolved in contemporary social 
science, but seen as a natural division of labour in more mature sciences.    
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 To set the stage for our discussion, Section 2 presents a 2x2 table illustrating the crucial 
distinction between the form of an analytic tool and its uses or applications.  Section 3 considers 
the dichotomy between models of data and models of the real world [or theories about the real 
world].  Section 4 softens the earlier dichotomies with examples of mixed forms of analysis. I 
conclude with a comment on the abstract – and therefore incomplete -- character of all scientific 
knowledge, whether empirical or theoretical. 
 
2.  Analytic tools and their disparate uses 
 
   Much of the methodological confusion surrounding the epistemology of theory, models, 
and data can be clarified by emphasising the distinction between an analytic tool and the purpose 
for which it is being used.  A simple two-by-two table can help.  Figure 1 emphasises the fact that 
the same mathematical or statistical tool can be used for different kinds of scientific analysis, 
that different tools can be used for the same purpose – and so on for the other two cells – 
same/same and different/different.  The table can be used to classify demographic work, with 
examples readily available for each of the cells, although the distribution is far from even.   
             
  Figure 1:  Analytic Tools and Their Uses         
      | 
a]  Same tool, same purpose    |  b]  Different tools, same purpose 
      | 
       Example: standardised use of                    |         Example: exponential, logistic, cohort    
        cohort-component model for                  |           component, systems, etc. models  
        population projection   |  for population projection  
      | 
____________________________________|______________________________________  
c]  Same tool, different purposes  |  d]  Different tools, different purposes   
       |        
      Example:  cohort-component model |        Example: Statistical models for data analysis;                                      
 for forecasting [prediction],  |  differential equations for 
 simulation, and prospective  |  theoretical analysis    
 analysis [Romaniuc, 1990]  |    
      | 
      |  
 Cell a [same/same] might be thought of as containing stylised or stereotypical 
demographic analysis, in which the same analytic apparatus is used over and over for the same 
purpose.  A classic example is the use of cohort-component projection algorithm for the purpose 
of population forecasting.  This use has been canonised by governments and other official 
organisations, such as the United Nations Population Division and the World Bank.  In 
demographic texts, the technique is routinely presented as the standard forecasting technique, 
sometimes the only technique. 
 
 This has resulted in comparability among population forecasts by various governments 
and other agencies, and insured a certain kind of correctness in procedure.  But it also has 
discouraged – or at least not encouraged -- exploration of other possible approaches to 
population forecasting, the use of different tools for the same general purpose.  The 
identification of population forecasting with cohort-component forecasting is related to what 
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Oeppen and Wilson [2003] have termed reification in demography – the confusion of a particular 
abstract measure or model in demography with the underlying real-world process to which it 
pertains. 1 The continued use of the same technique, and virtually only that technique, for the 
same purpose is not inherently fallacious, but it tends to lead to reification by sheer repetition and 
habit. We tend to develop tunnel vision.  
 
 For the purpose of population forecasting, cell b [same purpose/different tools] would 
include, as well as cohort-component projection: the Leslie matrix; the exponential and logistic 
functions, and their extensions [common in population biology and ecology]; systems models for 
projection [e.g., with feedback from outcomes to inputs].  In the beginnings of modern 
population forecasting in the early decades of the 20th century, a variety of methods was 
explored, before the cohort-component approach became dominant almost to the point of 
monopoly [de Gans, 1999; Burch, 2003a].  Only recently has the field begun once again to 
explore alternatives to the standard model, such as the addition of feedbacks, socio-economic 
and environmental variables, and stochastic inputs [with confidence intervals on outputs].   
 
 Another classic example of the use of different tools for the same purpose is the use of 
both the stable population model and cohort-component projection in order to clarify the effects 
of changing mortality, fertility, and migration on population age structure. Each approach yielded 
the same general conclusions [e.g., the centrality of fertility decline in past population aging], but 
each shed distinctive light on various facets of the problem, and some problems were more 
tractable using one approach rather than the other [e.g., the role of migration and transient 
dynamics].2      
 
 The stereotypical approach to population forecasting and other demographic analyses –  
the tendency to identify one tool with a particular use and only that use --  has also had the result 
that cell c [same tool for different purposes] is not as full of examples as might be desirable.  
The regular presentation and use of the cohort-component projection algorithm for projection, 
for instance, helped obscure its value for other purposes.  Romaniuc [1990] has provided the 
most systematic exposition of this point in his discussion of the standard projection model as 
‘prediction,’ ‘simulation,’ and ‘prospective analysis.’  In general, he views the uses of the 
algorithm as being ranged on a continuum, from the most realistic [prediction] to the least 
realistic [simulation].  Burch [2003b] has developed the same line of thought with respect to the 
life table, arguing that at base it is a theoretical model of cohort survival, with the description of 
period mortality rates only one of its uses.  But current demography texts tend to remain in cell a 
– the projection algorithm is for forecasting, the life table is for measuring current mortality.  
 

                                                 
1  Abstraction in the standard cohort-component projection model include its deterministic and linear character , the 
absence of feedbacks and interrelations among input variables, and the absence of any but demographic variables. 
[environmental, economic, social, etc.].    
2 The habit of thinking in terms of many different tools for the same general purpose is common among 
demographers when it comes to measurement [cf. the large variety of measures of fertility], but not so common 
when it comes to other kinds of analysis.  The idea of a ‘toolbox’ of theories and models is central to the model-
based view of science among philosophers [see Giere, 1999, 1988].  It is found in the work of some empirically 
inclined social scientists [Coleman [1964] on ‘sometimes-true theory’; Meehan [1968]; Keyfitz [1975].  The more 
influential doctrine of scientific procedure has been logical empiricism, which aims toward discovery of the one true 
theory.   
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 There is nothing novel in the idea that a given analytic tool can be used for several 
different purposes.  Coleman begins his classic work on mathematical sociology [1964] by 
outlining four major – and different – uses of mathematics in science.  The idea is implicit in the 
adoption of mathematics by so many different disciplines and in the use of some mathematical 
concepts in so many different substantive contexts.  Witness the exponential function, used to 
study radioactive decay, population growth, interest rates and discounting, and fixing the time of 
death by body temperature, to mention only a few.  In demography, the exponential is usually 
presented as a ‘technique,’ even though many of its actual uses are speculative and theoretical in 
character – doubling times, reductio ad absurdem projections [e.g., human population for the next 
2000 years at 1.5% per annum].    
 
 But some tools are closely wedded to particular kinds of analysis, and this leads to cell d 
[different tools for different purposes].  Statistical models, for example, are designed for 
analyzing data, for summarising and describing data sets, including relationships among variables.  
But they are not so useful for the statement of theoretical ideas or the representation of real 
world systems.  For this, one needs tools that can deal with unobserved entities or unmeasured 
variables in a way that goes beyond simply combining them in an error term. Section 3 elaborates 
on this point. 
 
3.  Modelling Data and Modelling Ideas About the Real World 
 
 A key distinction is between models of a set of empirical observations [data] and models 
of a set of ideas about real-world processes.  Wickens [1982] provides a nice statement of the 
point, noting that ‘statistical models describe what the data look like, but not how they came 
about,’ and proceeds to suggest ways for ‘interpreting the data through a description of the 
mechanisms that underlie them’ [p.9; see also Hedström and Swedberg, 1998].  There is a sense 
in which data are outcomes of a partly ‘black box’ whose inner working must be modelled in 
some other way.   
 
 The most common multivariate statistical models such as linear regression and its 
refinements are often interpreted as though they represent underlying real-world processes.  But, 
as Abbott [1988] has argued convincingly, such an interpretation more often than not involves 
the fallacy of reification, the invention of a ‘general linear reality,’ a social world that is linear and 
largely atemporal.  Abbott distinguishes this ‘representational’ interpretation of linear models 
from their more appropriate ‘entailment’ use – if a theory or hypothesis is sound, then I should 
find a certain statistical structure in a relevant data set.  But now statistical modelling is being 
used not to state some theoretical idea, but to test it.  Traditional statistical analysis is pre-
eminently a tool of empirical research.3 

                                                 
3  A qualification is needed on this point, based on the recognition of two very different kinds of theory in science.  
Cartwright’s [1983] finds a common distinction in physics between ‘phenomenological’ and ‘fundamental’ theory.  
The former deals with empirical regularities and ‘laws’ [e.g., Newton’s law of falling bodies], without delving very 
deeply into explanatory mechanisms.  Coleman [1964, pp.34-52] makes a related distinction between ‘synthetic’ and 
‘explanatory’ theory.  Insofar as statistical analysis yields findings of strong empirical regularities, even universal 
relationships, it can provide the building blocks of a theoretical system.  This has been precisely the logical empiricist 
program for science.  But in the human sciences, strong empirical laws are sufficiently rare that some other approach 
to theory development is required [see Meehan, Keyfitz, Cartwright, Giere, Teller].  Theory must ultimately be based 
on empirical research, but, in the face of culture and history and an absence of universal generalisations, it does not 
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   The differential equation, by contrast, is pre-eminently the tool of theory.  Lotka puts it 
as follows: 
 

In the language of the calculus, the differential equations display a certain simplicity of 
form, and are therefore, in the handling of the theory at least, taken as the starting point, 
from which the equations relating to the progressive states themselves, as functions of 
time, are then derived by integration [1956, p.42].   
 

In a footnote he adds: ‘In experimental observation usually [though not always] the reverse 
attitude is adopted.’  The study of data on the progressive states of a system over time or at a 
point in time [as is often the case in contemporary social science] is a matter of statistical analysis. 
 
 As I have argued elsewhere, the infrequent use of differential equations in demographic 
research may be due in part to demography’s relative lack of interest in theory [Burch, 2004]. 
 
 Cell d has occasioned more than a little confusion regarding the uses of statistics and 
modelling, including differential/difference equations models.  Much of the confusion stems 
from a mistaken notion that multivariate statistical analysis can yield essentially theoretical 
propositions as results.  As noted earlier, Abbott [1988] has cogently argued against this idea, 
typified in his quote from Blalock [1960] that ‘These regression equations are the “laws’ of 
science” [p.275], a statement firmly rooted in logical empiricism. Abbot’s review of the differing 
fortunes of Blalock’s Social Statistics [featuring multiple regression] and Coleman’s Introduction to 
Mathematical Sociology [featuring differential equations] suggests the popularity of Blalock’s view. 
Coleman’s work had gone out of print by the time Abbott wrote; Blalock’s text was regularly 
reprinted and published in new editions. The notion that theory essentially moves beyond the 
data has been resisted by many quantitative social scientists. 
 
 A similar confusion is found in some writings of the systems dynamics school of 
modelling, based on the pioneering work of Jay Forrester at MIT.  In several of their works, 
representatives of this school extol the superiority of systems dynamics modelling over the use of 
statistical analysis, as if the two served the same scientific function.  In one recent manual, 
multiple regression is held up to ridicule [for an elaboration, see Burch, 2002].  But there is little 
recognition that most of their systems dynamics models were in fact theoretical, in the sense of 
speculative and untested. Although they contain some data and often try to reproduce some data 
series as output, they are not fundamentally empirical. They were often criticised by empiricists, 
who found them fanciful, and by theorists, who found them lacking in firm theoretical 
grounding.  As Hummon [1990] remarks of computer simulation, ‘Applications in the past have 
tended to focus on large, complex systems. Simulation models of complex organizations, cities, 
the world environmental system, were the standard fare…. Of course, coherent theories for these 
phenomena did not exist.’  He goes on to note that more recent applications of computer 
modelling to theory construction are more focused, ‘often tied to existing theoretical models.’ 
 
 
 

                                                                                                                                                         
simply flow from it through the application of inductive logic.  See the contemporary theoretical physicist Roger 
Newton [1997] on theory as an act of the creative imagination.   
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4. Hybrids and Mixed Forms: Revisiting the Dichotomies 
 
 The distinction developed in the previous section is important but it is not absolute.  One 
should think of it in terms of the emphasis or even spirit of a particular piece of analysis.  Is it 
mostly about the data, or is it mostly about the theoretical ideas?  Some analyses lie at one or the 
other pole, for example, regression analysis of data with few if any guiding theoretical ideas, or at 
the opposite extreme, pure theoretical speculation oriented only casually toward empirical 
observation. 
 
 The advance of any science involves an ever closer intermingling of data and theory.  
Theory must ultimately be evaluated in terms of its ability to explain or predict empirical 
observations.  And data, at least in a scientific context, is meaningful only if it is collected with an 
eye to theoretical development.  Recent developments in statistics, theory and computer 
modelling have tended to blur the distinction and promote healthy intermingling. 
 
 Some statistical models, for example, have moved a little closer to theoretical models. 
Structural equations models such as path analysis are a case in point.  When properly used, they 
are fit only after one has formulated at least a primitive model of the process at hand.  
Assumptions must be made about temporal ordering, causal linkage, and direct and indirect 
effects.  A path model begins to unravel the complex process that links outputs to inputs.  They 
are rudimentary mechanistic models.  Such models remain largely statistical and empirical, 
however, insofar as they include only variables that have been measured [at least indirectly, as in 
factor analysis, latent variables, and similar techniques].   
 
  By the same token, computer modelling as theoretical elaboration has begun to 
incorporate elements of statistical analysis.  The development of stochastic population 
projections is a case in point [see, for eample, Raftery, Givens, and Zeh, 1995; Lee, 1999; 
Keilman, Pham, and Hetland 2000].  
 
 These blendings can require a re-examination of categories like stochastic and deterministic.  
Consider a largely deterministic systems model that has been slightly modified by the addition of 
random terms to one of the key relationships  [y = (f)x + α, where α is some sort of random 
term], and by the inclusion of one or more conditional statements involving such a ‘randomised’ 
variable.  This could represent some sort of threshold, such that very different outcomes result 
from the variable being above or below the threshold.  An example might be differential 
equations models of species extinction once the population declines below a certain size. Now it 
is a case of a random event triggering a qualitatively different response in an otherwise 
deterministic model. Do we call such a model deterministic or stochastic? 
 
  Another example of a movement of computer modelling toward statistics can be found 
in more recent incarnations of dynamics systems software, characterised earlier as somewhat 
hostile toward statistical methods.  Goldsim, a relatively new product, emphasises the addition of 
random terms to model variables [as described just above], and the running of multiple 
simulations to yield both average values and variance of results.  Recent versions of older 
software such as Modelmaker or Vensim emphasise statistical tests for goodness of fit to the 
data.  More importantly, they include optimisation routines to find some parameter values that 
yield the best fit [with already known parameter values fixed, at least within given ranges].  
Statistical methods are being used to specify some key elements of a complex model.  But many 
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elements – perhaps the majority – remain beyond the ken of empirical observation.  One has a 
theoretical model that is partly estimated statistically.  
 
 The emerging field of computational modelling [agent-based or rule-based models] 
provides many more examples of an intermingling of determinism and chance [in demography, 
see Billari and Prskawetz, 2003].  In earlier micro-simulation such as Monte-Carlo models, events 
occur mainly by chance, according to various probability distributions [but see some early models 
of family and household formation, in which kinship rules play a central part; see, for example,  
Wachter, 1987].  In agent-based models, chance still operates at many points.  But central to most 
models are strong behavioural rules which are determinative, that is, not subject to chance.          
     
 
5. Concluding Comments 
 
  Our conventional views of empirical social science need revision.  In particular, 
demography and mainstream empirical sociology need to develop a more sophisticated approach 
to theoretical models.  We need to reconsider the superordinate position we have granted highly 
flawed and limited statistical analyses, which have regularly be used to ‘disprove’ perfectly sound 
and useful theory.  Statistical analysis may be closer to the data, but that does not necessarily 
mean it is closer to reality.  A carefully crafted theory or model, which can include unmeasured – 
even unmeasurable variables –  may be a better representation of reality for many purposes. 
 
 Demographers and other highly quantitative social scientists often think of statistical 
analysis of data as solid and hard-headed, firmly grounded in reality – in sharp contrast with the 
verbal speculation of theorists or the ‘made-up’ numbers of simulators. But the epistemological 
differences between theory, modelling and statistical analysis are not as great as our conventional 
thinking would have it.  Statistical analysis is not the bedrock it often is taken to be. 
 
  Empirical data sets which we subject to statistical analysis are abstract representations of 
concrete reality; they are partial, selective, over-simplified depictions of some complex concrete 
real-world system.  The data set does not constitute theory in any meaningful sense, but it often 
is shaped by the influence of implicit theoretical assumptions as to what data are important.  
There is no such thing as pure empirical description.  There always is selection.  Each datum is 
empirical – and real to the extent of its precision – but the assumption that the overall data set 
represents an object or system is just that, an assumption.   
 
  The standard multivariate statistical models also are highly abstract creations of the 
human mind.  They assume a particular mathematical structure among a limited set of variables, 
whether that structure exists in the real world or not.  If they are thought to represent the world, 
they are almost certainly grossly over-simplified representations, which is not to say that they may 
not be useful for some purposes.  But an abstraction – say, a linear or log-linear model – added 
to an abstraction – a data set as described above – does not yield absolute truth about the 
concrete world.  Like theory, they are selective and partial representations.  They may be useful 
for some purposes, but that does not make them true.  If such multivariate models are viewed,on 
the other hand, as ‘entailments’ of some well-developed theory, then they become analogous to 
experimental results.  They do not of themselves explain anything; they only indicate that an 
explanatory theory has some plausibility.   
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 These limitations of statistical analysis of data are the basis for the notion of the 
underdetermination of theory by empirical research [see Turner, 1987].  A striking statement of 
the problem is provided by Bracher, Santow, Morgan and Trussell [1993].  After a state-of-the-art 
analysis of unusually rich survey data, they comment: ‘However detailed and comprehensive the 
“explanatory” factors that we have had at our disposal, they are, after all, only dim reflections of 
the possibly unmreasurable factors that keep marriages together or drive them apart…’ [p.423]. It 
is precisely the role of theory to go beyond such dim reflections. 
 
 But, as suggested above, the two kinds of work are not so much diametrically opposed as 
lying toward the opposite ends of a continuum of human attempts to describe and understand 
the real world of human behaviour.  All human knowledge, including empirical statistical 
analyses, is a human invention, a construct. Like theory or modelling, it is selective, abstract, 
limited, incomplete, provisional – in short relative, not absolute.  There are important differences 
among different kinds of social scientific knowledge and the processes that generate them.  But 
their fundamental epistemological character is the same.  Many of our beliefs often are held as 
absolutes, as fundamentally true.  Scientific knowledge, by contrast, can aspire at best to ‘realism 
without truth’ [Giere, 1999].   
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