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1.- INTRODUCTION 
 
In this paper we present a new approach designed to analyze age-specific fertility 
parameters. For each fixed moment in time t we define a linear model for the Log Odds 
of fertility. From this model a State-Space formulation is obtained that allows 
smoothing the parameters over time simultaneously.  
The flexibility of the proposed method permits to use Odds for each individual age and 
parity or Odds for age-group and/or all parities together. The parameter series of the 
model are interpreted in terms of the level and timing of fertility (Bongaarts and Feeney 
(1998)) and then different scenarios can be used to forecast fertility measures. 
The model is a multivariate binomial State-Space model but in this first attempt we use 
an approximate multivariate Gaussian State–Space model to obtain estimates of the 
parameters series. 
Several data sets are used to illustrate the suitability of the new methodology to analyse 
fertility patterns. 
The layout of the article is the following. In Section 2 some notation is defined. Section 
3 is devoted to describe the logistic model that is illustrated with some examples in 
section 4. The State-Space formulation is described in Section 5 and a final example is 
analysed in section 6.   
 
 
 
2.- DATA and NOTATION  
 
For each fixed time t we consider a fertility table that represent a sample of women from 
a theoretical population. Women are cross-classified on the binary variable maternity 
between (yes, no) and on the variable age. The tables are obtained using estimates of the 
age-distribution of women and the observed number of births by age of the mother in 
the period [t, t+1). To make the presentation simpler we assume that age is grouped in 5 
year intervals. In other cases a similar analysis could be done. Then, fertility tables we 
want to model will have the following aspect: 
 

Woman age  Maternity 15-19 20-24 25-29 30-34 35-39 40-44  
Yes n11 n12 n13 n14 n15 n16 n1+ 
No n21 n22 n23 n24 n25 n26 n2+ 

 n+1 n+2 n+3 n+4 n+5 n+6 n++ 
 



where,  
1,..6j  1)t[t,between  ocurring births with 5j15  to1)-5(j15 aged )(1 =+++= womenofnumbertn j

 1,..6j  1)t[t,between   births without 5j15  to1)-5(j15 aged )(2 =+++= womenofnumbertn j  
 
A model for the hypothetical population can be formulated : 
 

• The non-conditional probabilities :  
1,..6j  5j)15  to1)-5(j15 aged is    theand 1)t[t,between  occurs ()(1 =+++= womanbirthptjπ

1,..6j  5j)15  to1)-5(j15 aged is    theand 1)t[t,between  occurs  ()(2 =+++= womanbirthnoptjπ

 
• the conditional probabilities, ( which are estimated using the period fertility 

rates) 
1,..6j  5j)15  to1)-5(j15 aged is   given that 1)t[t,between  occurs  ()( =+++= womanbirthptm j

 
 then, taking into account that n+j (t) is fixed by design, 
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• The number of women in the sample, aged 15+5(j-1) to 15+5j with birth in 

[t,t+1) will follow a binomial distribution: ))(),(()( 11 tmtnBtn jj +→  

• And the Odds Ratio:    
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We will also use the following vectors: 
 
Counts: ))'(),...(( 1611 tntn=1tN  

Totals:   ))'(),...(( 61 tntn ++=tN  

Probabilities:  ( )'61 )(),...,( tmtm=tΠ  

Odds Ratio: ( )'61 )(),...,()( ttt θθ== θθt  

Observed log Odds Ratio: 
'

26

16

21

11
)(
)(

log,...,
)(
)(

log ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

tn
tn

tn
tn

tY  

 
In some applications fertility analysis begins by defining subgroups of the female 
population according to parity. The parity specific fertility tables are analysed 
separately. In these cases a sub index for parity could be added to the quantities defined 
above.The properties of models are equal for parity grouped data or specific parity data.  
 
 
 
 
 
 



3.-  LOGISTIC MODEL FOR EACH  t 
 
(1)    (t)β(t)β(t)βt 210))(log( 21 AAθ ++= = tβA⋅   

where,   ))'(),(),(( 210 ttt βββ=tβ  is a vector of three parameters and [ ]210 A,A,AA =   
is a 6x3 matrix, with column-vectors A0 , A1 and A2. These column vectors are defined 
as follows:  
A0 = (aj0)j=1,...,6  ; aj0 = 1;      j=1,...,6 
A1 = (aj1)j=1,...,6  ; aj1 =(j- (6+1)/2)2 –(62-1)/12;      j=1,...,6 
A2 = (aj2)j=1,...,6  ; aj2 =j-(6+1)/2;       j=1,...,6 
 
Consider also the alternative formulation: 
Observed Odds: )()()( tTtQt jj =θ  Where 

 ))(exp()( ttQ oβ=  and ( ))()(exp)( 2211 tAtAtT jjjjj ββ +=  
 
Two theoretical results illustrate the suitability of the Logistic model to describe fertility 
patterns and examples in section 4 illustrate the goodness of fit of the model with real 
data. 
 
RESULT 1: Model (1) corresponds to a loglinear model with interaction terms that 
reflect the ‘quadratic trend’ in fertility schedules. 
 
RESULT 2: )(tQ  is a measure of the period fertility level and )(tTj is a measure of the 
timing of fertility because in periods where only the level of fertility changes and no 
anticipation or postponement is observed  )(tTj  remains constant and in periods where 
only changes in the age distributions are observed both )(tTj and )(tQ  remain constant.   
 
 
4.- LOGISTIC MODEL EXAMPLES  
 
Two data set are analysed in this section, example 1 using contemporary data from 
developed countries and example 2 using historic series from Sweden.  
 
4.1- Example 1: Internacional data, comparision with Coale-Trussell and Spline 
based models 
 
In order to evaluate the suitability of the logistic model (LO) to estimate fertility 
schedules in real cases we consider a set of fertility rate data for five-year age groups  
from developed countries. We compare, in table 1, the fit of the LO model with that of 
the Coale-Trussell (CT) model and the Quadratic Spline (QS) model of Schmertmann 
(2003).  
CT and QS models use four parameters and LO model uses only three. The data set is 
the same as that used in Schmertmann (2003) and corresponds in the majority of 
countries to the fertility schedules from 2001. The relative error is used as a measure of 
goodness of fit.  
 



 

 
4.2.- Example 2: Swedish parity specific data. 
 
We have used the SAS package to adjust LO models. 



The data used are the tables that cross classify women by births and age. These tables 
are obtained using data from each parity. This data set has been also analysed by Kohler 
and Ortega (2002). 
 
The three figures below illustrate the performance of the model for these data.   Figure 1 
shows Swedish fertility levels, measured using the TFR, for parities 1 and 2 from year 
1970 to 1996. For each parity two series are pictured, the observed TFR and the 
predicted TFR using the LO model applied to the observed odds. Both cases illustrate 
the high quality fit of the model in terms of the TFR.  
 
Figure 2 shows the relative evolution of the quantum component, Q(t),  for the first 
three parities using 1970 as reference year. The quotient Q(t)/Q(1970) has been 
calculated and plotted for each year t in order to compare the relative changes between 
parities. The general trends are similar in the three series with some differences. An 
initial decreasing period is observed, followed by a period, of different lengths 
depending on parities, where there are no important relative changes. Then an 
increasing period initiated at different moments in time but shared during the baby 
boom. Finally a decreasing period initiated at the beginning of the baby bust (1995), 
except in the case of parity 2 which shows a delay of four years. One of the main 
conclusions that can be drawn from the plot is that the relative changes in the quantum 
for parity 1 are lower than those for parities 2 and 3. While the maximum change for 
parity 1 is around 32% (0.73 in 1984, 1.05 in 1991), the variations in parity 2, 72% 
(0.84 in 1975, 1.56 in 1994), or in parity 3, 61% (0.63 in 1977, 1.24 in 1990), are 
considerably greater. 
  

To illustrate the relative changes in tempo, the series 
))1970(exp(

))(exp(

2

2
β
β t is plotted in figure 

3 for parities 1, 2 and 3. In this case the relative changes in tempo are clearly greater for 
parity 1 than for parity 2 and 3. Another interesting feature can be observed in this plot. 
While in the baby boom the relative changes are similar in all parities, during the baby 
bust the relative changes in parity 1, 6% (1.06 in 1990, 1.12 in 1995), are three times 
those in parity 2 and 3. 
  
  
 



 
 
 
 



 



 
5.-SMOTHING PARAMETERS OVER TIME:  STATE-SPACE MODELS   
 
 
The book by Durbin and Koopman (2001) is an important reference to understand this 
section. Using the vectorial notation the LO model can be easily formulated as a state-
space model, 
 
 
 
          BINOMIAL 
 
 
Where the vector 

tα is defined in a general form by: 
 

( ) '
222111000 )(),...1(),(),(),...1(),(),(),...1(),( ptttptttpttt −−−−−−= βββββββββtα

     
the matrix B is obtained from the relationship: Aβt=Bαt  
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),(6 tt ΠNB  Means a 6x1 vector whose components are independent binomial 
distributions. Here, tN and tΠ  are 6x1 vectors. Each component of these vectors has 
the parameters of the corresponding binomial distribution. 
We are now working with the software to analyse observations from a multivariate non 
Gaussian State-Space model but at the moment it is not ready. An approximated 
Gaussian model can be formulated and the analysis can be obtained from existing 
software. 
 
 
 
GAUSSIAN 
 
 
 
6. – A STATE-SPACE MODEL EXAMPLE 
 
To analyse the data in this section we have use the package SsfPack in Ox computing 
environment ( Koopman et al (1999)). 
  
In this example we consider fertility tables from Spain during the period  1971-2001.  
We consider a Gaussian State-Space model as defined in section 5: 
 
 
 
 
 
 
To guess the definitive value of  the matrix R and the exact definition of αt we have 
fitted several ARIMA models to the univariate parameter series )( and )(),( 210 ttt βββ , 
which are given,  for each t, from the logistic model fit. The best ARIMA models for 
the state-space fit are: 

)(0 tβ   ARIMA(1,1,0) 
)(1 tβ   ARIMA(0,1,0) 
)(2 tβ   ARIMA(1,1,0)  and  then  
( )'

20210 )1(),1(),(),(),( −−= ttttt βββββtα      
 
After trying the Gaussian State Space formulation with Spanish data we have observed 
that the autoregressive coefficient of )(0 tβ  could have the same value as the 
autoregressive coefficient of )(2 tβ  (denoted as φ  below). Then, the R matrix we are 
using in Gaussian State Space formulation (and the one we propose initially in Binomial 
SS) is: 
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Figures below illustrate the result. Figures 1 and 2 compares the series for  )(tiβ  where 
the values for years 2002-2007 are forecasted. Figures 3-6 compare the observed and 
adjusted values for specific age fertility ‘rates’ (mj(t) values).  
 
 Two approaches are being compared. In one side the State-Space model approach as it 
has been defined in the paper. On the other side a standard approach that fit a Box-
Jenkins model separately for each series βi(t) obtained after adjusting the logistic model 
separately for each t. The corresponding ARIMA models obtained in the latter case are: 

)(0 tβ   ARIMA(2,1,0) 
)(1 tβ   ARIMA(1,1,0) 
)(2 tβ   ARIMA(1,1,0)   

 
The most important primary conclusions are: 
 

• The time series models for βi(t) are simultaneously adjusted using the State-
Space approach, gives simpler models than the Box-Jenkins approach and 
comparable behaviour to model the response values. 

• The procedure successfully model the trends displayed by the series of age-
specific values and internally consistent forecasted values for the specific-age 
parameters are obtained.  

• With the state-space procedure it is possible to obtain confidence band for 
forecasted values that take into account the different source of errors. 

 
 
There is a lot of work ahead for getting definitive conclusions by comparing the new 
method with standard approaches to forecast fertility rates and by applying the 
methodology to data from other countries.  Moreover some other aspect of the model 
should also be investigated in the future as the ability of the model to forecast response 
values under different scenarios and the flexibility of the model to incorporate external 
information. However in the light of these preliminary results we conjecture that the 
State-Space approach presented in this article succeed in simultaneously modelling the 
fertility age pattern and in smoothing the parameters over time 
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