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ABSTRACT 
 
Much of the debate in the fertility literature has concerned the presence and strength of 
spatial diffusion effects, as opposed to the role of development. Bocquet-Appel and Jakobi 
(1998) suggested the use of a space-time interaction test based on the Knox statistic to test 
for the evidence of spatial diffusion of contraception at the onset of fertility transition in 
Great Britain. This test has one major drawback: its failure to account for structural 
variables, which also change in space and time, induce biased results for the significance 
test increasing the real type I error level, even if the null hypothesis is true. We propose a 
Monte Carlo method for constructing unbiased space-time interaction tests. The procedure 
is illustrated with simulated data and with real fertility data from the last five Brazilian 
censuses.  

 
1. INTRODUCTION 

 
Just what factors lead to fertility decline has long been a subject of contentious debate.  
Some recent fertility studies have used spatial statistics methods to study the onset of 
fertility transition, and have attempted to demonstrate the existence and importance of 
diffusion effects, as compared to changes in social and economic conditions, as 
determinants of  the timing of fertility decline in both historical and contemporary 
developing country populations.   
 
Bocquet-Appell and Jakobi (1998) proposed an innovative way to test the hypothesis of 
spatial diffusion of fertility control. They used the test introduced by Knox (1964) to verify 
if the there is evidence of space-time interaction and applied the method to data from Great 
Britain. In general terms, to each locality they associated a time indicating its fertility 
decline onset. They verified if geographically close localities tend to have similar onset 
times as in a typical contagion process. Since they found a significant result, they conclude 
that there is evidence of diffusion processes underlying the fertility decline.  
 
However, we argue that there is a major problem with this approach. Structural variables 
are changing at the same time as the demographic process, and they are generally spatially 
and temporally structured. In fact, we expect that development tends to be highly clustered 
in space and time since neighboring localities have similar natural resources and economic 
activities. If structural variables alone drive the fertility decline process, significant space-
time clustering of fertility decline can be entirely due to this confounding variable. That is, 



if the changes in the structural variables are not constant for all geographical areas, the null 
hypothesis distribution of the Knox test is biased towards large numbers and the real error 
type I level  of the test will be much larger than the nominal value used. Therefore, space-
time changing structural variables is a potential problem that must be adjusted for.  
 
In this paper, we propose an unbiased version of the Knox test. The test adjusts for the 
space-time interaction inherent in the structural variables. The one drawback is that it 
assumes a parametric model for the structural variables effect on fertility. The new method 
is based on a Monte Carlo procedure.      
   
In Section 2, we present the usual Knox test and its adaptation by Bocquet-Appel and 
Jakobi (1998) for testing for the spatial diffusion of fertility decline. Using simulated data, 
we show in Section 3 how it can be highly biased when structural variables have space-time 
interaction. In Section 4, we present our proposal, and we illustrate its use with simulated 
data and with real fertility data from Brazil in Section 5. We close in Section 6 discussing 
practical and theoretical issues.    
 
2. THE KNOX TEST  
 
Consider a map partitioned into n small and contiguous geographical units indexed by i. 
We associate a random variable yi to the i-th area measuring its onset of fertility, recorded 
in terms of its timing. Typically, there will be substantial temporal variation in the values of 
yi affecting all areas and reflecting seasonal effects and other time trends. There could also 
be large spatial heterogeneity with small values of yi clustered in certain regions while other 
regions have larger values. Taking for granted the time clustering and the space clustering, 
the interest focus on the simultaneous space and time interaction effect. That is, after 
adjusting for purely spatial and purely temporal clustering, the interest is to test whether 
cases which are close in space are also relatively close in time, and vice versa. If so, we say 
that the data exhibit space-time clustering or space-time interaction.  
 
Spatial statisticians and epidemiologists have been acquainted with this problem since 
Knox (1964) proposed his space-time clustering test. Many applications of his test have 
appeared in the literature. For example, Bhopal et al. (1992) used it and found strong 
evidence that apparently sporadic case of Legionnaire´s disease in Glasgow and Edinburgh 
exhibited space-time clustering. Samuelsson et al. (1994) supported the hypothesis that 
infectious agents are responsible to a portion of insulin-dependent diabetes mellitus after 
detecting space-time clustering of cases in South-East Sweden. The same conclusion 
concerning childhood leukaemia was reached by Birch et al. (2000). Lack of support for 
associations between environmental hazards and Down syndrome based on national 
registers data from England and Wales was the conclusion of Morris et al. (1998) who were 
motivated by anecdotal reports of occurrences of space-time clusters of Down syndrome. 
Veterinary epidemiologists are also using space-time clustering detection methods, as 
shown in the review papers by Ward and Carpenter (2000) and Carpenter (2001). 
 
The most popular statistical technique for testing space-time interaction is still that  
proposed by Knox (1964) in the context of health events affecting risk populations.  
Specifying a spatial and a temporal critical distance, it is possible to indicate when a pair of 



events is close in space or close in time (Is it clear that the EVENT is composed by the 
spatial coordinates and the timing yi ?). The test is based on the number of pairs of events 
which are simultaneously close in space and in time. A large number of such pairs would 
be an indication that cases which are close in space tend also to be close in time leading one  
to conclude that there is space-time interaction. 
 

More formally, let R = A x [0, TF] be a three-dimensional region where A is a 
polygon and [0, TF] is a time interval. We observe n events in R with coordinates (xi, yi, ti) 
with i=1,...,n. Let dij and tij be the spatial and temporal distances between events i and j, 
respectively, for i≠j. Let D and T be the distance and temporal critical values. The 
thresholds D  and T must be specified by the user.  
The function δij is a binary indicator that events i and j are neighbors in space: 
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Likewise, define the binary indicator of closeness in time:  
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A third function is the binary indicator that the events i and j are close in space and time: 
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The Knox test statistic is given by X =∑
< ji

ijσ , the number of pairs of events which 

are simultaneously close in space and time. This statistic is compared to the reference 
distribution under the null hypothesis which is approximated by sampling B permutations 
of the events’ time indexes. B pseudo datasets are generated and X is evaluated in each one 
of them. The p-value is the proportion of datasets (including the original one) with X equal 
or larger than the Knox statistic observed in the original dataset. A small p-value is 
evidence favoring of the presence of space-time interaction.   

 
The Knox test has several advantages that make it a popular choice among epidemiologists 
and biostatisticians: it does not require population risk data; it is not affected by temporal 
variation of events’ diagnosis, notification or population if this temporal variation is 
constant in space; and it is not affected by the spatially heterogeneous distribution of the 
risk population if this spatial variation is constant in time. 
 
One cannot assume that population increase is spatially homogeneous and, in this case, the 
Knox test can be misleading (Mantel, 1967; Roberson and Fisher, 1983). Klauber and 
Mustachi (1970) proposed a partial solution by dividing the data into different time 
segments, calculating a test statistic in each one of them and then summing to obtain an 
overall test. Although this procedure reduces the bias it also decreases the power of the test. 
The effect of the bias caused by geographical population shifts was studied by Kulldorff 



and Hjalmars (1999). They also proposed an unbiased test but it requires risk population 
information to adjust for the population shift bias.  
 
Another problem with the Knox test is its dependence on the choice of the spatial and 
temporal critical thresholds, the usual solution being to repeat the analysis repetition for a 
number of distance and time ranges and their posterior combination or the use of Mantel´s 
extension of Knox proposal (Mantel, 1967). Baker (1996) and Kulldorff and Hjalmars 
(1999) solved this problem in a similar way by using the maximum over different scales as 
a test statistic. The null hypothesis reference distribution is found by Monte Carlo 
procedures. 
 
Diggle et al (1995) showed how an approach based on point process second-order analysis 
could estimate the degree of space-time clustering as a surface function of the spatial and 
temporal critical thresholds and suggested to integrate the surface over the spatial and 
temporal ranges. Jacquez (1996) used a different procedure basing his method on a test 
statistic calculating the number of pair of events which are k nearest neighbors in both 
space and time. 
 
Bocquet-Appel and Jakobi (1998) adapted this test for the case of fertility decline by first 
constructing a binary variable (transiting or non-transiting locality) determined by a 
threshold criterion for the change in marital fertility, and then testing for space-time 
interaction in this binary variable.  Their data spanned four decades, and was based on 68 
spatial units.  Only after they had completed the test for diffusion, did they examine the 
level of other variables associated with the timing of the transition. 
 
3. A NEW PROPOSAL  
 
A large region is partitioned into n areas indexed by I=1,…,n. In each area, we have a 
t(generally short) time series of binary observations ity  indicating if area i has entered the 
fertility decline by time t. Associated with these outcomes, we also have time dependent 
covariates in the form of a k-dimensional vector itx .  
 
Denote by Ait the event that area i has not entered the fertility transition process past time t. 
Define the quantities  
 

Pit(x) = Prob(Ait | x) = Prob(yit = 0 | x) , 
 
the conditional probability that area i has not undergone fertility decline by time t given the 
covariate values at that time. Define also the quantity 
 

pit(x)= Pit(x) / Pi,t-1(x) = Prob(Ait | Ai,t-1 ,  x) 
 
We assume that Pi0(x)=1 for all x.  
 
This situation is well known in event history analysis where survival refers to the pre-
transition status. A major complication in survival studies is the presence of censored 



observations. However, in our case, censoring is very simple because only in the last period 
there could be areas that have not undergone the transition process and hence are possibly 
censored.  
 
Let Rt be the set of areas still under risk of entering transition at time t-1. This is called the 
risk set. Also, let Dt be the set of areas entering transition in the period from t-1 to t. The 
likelihood function is then 
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We assume a logistic function to describe the effect of the structural variables on the 
survival time of the pre-transition status: 
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Note that we allow the structural variables to have different impacts depending on the time 
period considered. This makes sense because the impact of a certain small amount of 
development in the beginning of the period study, in 1950 say, is likely to decrease by the  
end of the period.    
 
Equation (gato) does not envolve the spatial location of the areas but the resulting 
probabilities pit(x) will generally display a highly structured spatial pattern. This pattern is 
induced by the spatial pattern possessed by the structural variables. The interest is to know 
if the observed event times exhibit more space-time clustering than that induced by the 
structural variables alone.  
 
A way to eliminate the structural variables bias and at the same time retain the space-time 
interaction test is by means of a bootstrap test. These tests are useful in situations like ours 
where the alternative hypothesis is not well specified. To carry out a bootstrap test, it is 
necessary to specify two quantities: 
 

• A test statistic ( )yT , a function of the data. In our case, this is naturally the Knox 
statistic X and its observed value with the sample data is denoted by obst . 

• A null probability distribution 0F̂ for the data under the null hypothesis.  
 
This second quantity is more delicate to define. The objective of a hypothesis test 
(bootstrap or otherwise) is to calculate the p-value or achieved significance level  
 

( )( )obsH tT ≥*y
0

Pr  
where the quantity obst  is fixed at its observed value and the random vector y* has a 
distribution F0 specified by the null hypothesis H0. The bootstrap test estimates F0 by a 



plug-in distribution 0F̂  estimated from the observed data. Since we adopted a parametric 

model, we can let 0F̂  be the distribution determined by fixing the unknown covariate 

parameters equal to their maximum likelihood estimates tβ̂ .  
 
Hence, the significance of obst is assessed by the following algorithm:  

(1) Fit model (2) by the maximum likelihood method obtaining the estimates tβ̂ .  

(2) Generate B random datasets using the fitted values tβ̂ , where each random 
replication changes only the dependent variable y*, the onset of the fertility 
transition of each area. Any spatial pattern exhibited by these simulated datasets is 
induced by the structural variables, spatial diffusion processes being absent from the 
data generating mechanism.  

(3) For each simulated pattern, evaluate the Knox statistic X. The B values X1,...,XB of 
the Knox test statistic can be used to calculate a (parametric) bootstrap distribution 
of X under model (1). This distribution will be almost always be different from the 
generally used null hypothesis distribution of X. If the structural variables have 
some degree of space-time clustering, we should observe the values X1,...,XB  shifted 
towards larger values than those expected under this commonly used distribution.   

(4) Calculate the p-value for the space-time clustering hypothesis allowing for the 
structural variables effetcs. The reference distribution of the Knox test statistic X 
under the null hypothesis and with structural variable effects is provided by the 
empirical distribution function of the values X1,...,XB. Hence, the p-value is easily 
computed as the number of values X1,...,XB which are larger or equal to the observed 
value of X based on the real dataset.  

 
4. BEHAVIOR OF THE KNOX TEST AND OUR PROPOSAL WITH 

SIMULATED DATA  
 
We study the behavior of the Knox test using simulated data to show how it can be strongly 
biased. More specifically, its p-value calculation is not correct since it does not calculate 
the probability under the true null distribution. We describe next the details of the 
simulation and its results. 
 



    
Figure 1: Regular Grid used in the simulation. 

    
 
Consider a map with 144 areas located as a regular grid on the plane (see Figure 1). We 
considered 7 years of data and, in each area i and time t, we have a covariate xit. All areas 
saw a temporal increase in their values of xit. In each year, the set of values xit vary 
according to the ranges shown in Table 1. The spatial pattern is shown in Figure 2 with the 
more strong tone of red indicates a larger value. The pattern varies only along the 
horizontal direction, being constant in the vertical direction. It is clear that, as time passes, 
the whole region presents larger values of xit. This mimics in our simulation a situation 
where, in each point in time, there is a spatial pattern for the covariate with neighboring 
areas having similar values. At the same time, economic development happens and all the 
areas increase their xit values.     
 

YEAR 1 2 3 4 5 6 7 
Minimum -3.0 -2.5 -2.0 -1.5 -1.0 0.0 1.0 
Maximum 0.0 0.5 1.0 1.5 2.0 3.0 4.0 

TABLE 1 
 



 
 FIGURE 2: Spatial Pattern of Covariate Evolving in Time. The more white the color, the 
smaller the value.  
 
The probabilities of fertility decline onset change with time due ONLY to the covariates 
change. This dependence is the same whatever the point in time (that is, the coefficient of 
the covariate does not change in time), it is always 
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That is, β0=0 and β1=4. The covariate induces a spatial pattern in these probabilities and 
also makes them increase through time in each area considered individually. Figure 3 
shows the space-time evolution of the probabilities of fertility decline onset. The 
probabilities for all areas in the last period are close 1 and so we do expect to see all areas 
entered decline fertility by the last year. 
 
 Based on these probabilities, we generated sequentially a history for each area, We 
kept flipping coins with the associated probability pit until we saw the first success, 
indicating the time the area entered fertility decline.  

The onset variable is the year the area entered fertility decline and its pattern is 
shown in Figure 4. Note that the color pattern is the opposite of the previous plots. The 



reason is that the areas with small values of covariates are those with the smaller 
probabilities of entering fertility decline and hence, they are the areas that will have the 
larger values of the onset variable. Likewise, the large covariate areas are those with the 
smaller values for onset. 
 

 
FIGURE 3: Spatial Pattern of Probability of entering decline. The larger the covariate 
value, the larger the probability of entering fertility decline.   
 
 
 



 
FIGURE 4: Spatial Pattern of Onset Variable.   

 
 We considered as neighbor in space if two areas were separated by, at most, 2 times the 
unit distance in the regular grid of Figure 1. As with time, events were close if were 
separated by 1 or 0 years. The Knox statistic with this dataset was equal to 344, a highly 
significant value according to the usual permutation distribution for the Knox statistic (See 
Figure 5. The vertical line is the observed Knox statistic and the histogram shows the 
permutation-based distribution of the Knox statistic.  
 

 



 
Figure 5: Permutation distribution of the Knox statistic. 
Vertical line is the observed value. 

 
Hence, we generated data that had all the space-time interaction driven by covariates and 
hence no spatial diffusion was going on. However, the Knox statistic is highly significant. 
This shows that the permutation distribution is not the right way to look at the diffusion 
evidence when confounding covariates are present.  
 
We turn now to the analysis of this dataset with our bootstrap method. We applied the 
bootstrap simulation algorithm described in Section ??? with B=999. The result is in Figure 
6. The p-value is now 0.51. 
 

 
Figure 6: Permutation distribution of the Knox statistic for 
the model with covariate effects. Vertical line is the 
observed value. 

 
4.1 The power study 
 
Does the bootstrap test work if there is interaction on top of covariates effects? We want to 
know if the bootstrap test is able to detect true dispersion effects if they are present in 
addition to the effects of temporal change and spatially structured covariates. To answer 
that, we carry out a small simulation study using the framework presented before.  
 
We will generate datasets where there is a certain amount of fertility behavior diffusion 
among spatially neighboring areas. That is, if an area experiences fertility decline onset at a 



certain moment, this stimulates neighboring areas to also enter fertility decline. This 
influence can be felt at the same Census year data or in a next Census year data. Our model 
allows for synchronous influence within the same Census year data.  
 
The map and the single covariate are the same as previously. The dependent data are 
generated in two steps at each year. Starting from the first Census year data, we generate yi1 
initially as independent Bernoulli random variables with probabilities given by the 
covariate link function: 
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Considering the majority of areas that have not entered fertility decline, we allow them to 
still undergo fertility decline in this first Census year by means of influence of their 
neighbors who have entered fertility decline. More specifically, each i-th area still under the 
risk of entering fertility decline flips a loaded coin where “head” means onset. The loaded 
coin “head” probability is given by γθ where θ is a number between 0 and 1 and γ is a 
score for the presence of fertility decline onset in the spatial neighborhood score. There are 
several possible choices. For example, for γ, one can choose the proportion of neighboring 
areas that have entered fertility decline. Another option, which we used, is to set γ equal to 
1 if there is at least one neighbor out of the fertility decline risk, and 0 otherwise. The 
parameter θ measures the degree of shrinkage of µ towards zero. Note that, if 1=γθ , the 
area will enter fertility decline with certainty in this second step as a result of an extreme 
diffusion effect. The smaller γθ is, the less influence has the diffusion process. If 0=γθ , 
there is no chance that area i will enter fertility decline by influence of its neighbors. We 
selected some different values forθ.   
 
The generation process goes on similarly. In the first step if year 2, for those areas which 
has not entered fertility decline on year 1, we generate yi2 as independent Bernoulli random 
variables with probabilities given by the same covariate link function as before: 
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 Note that we do not change the covariate parameter β although this is also possible. In the 
second step, the areas that have not entered fertility decline interact with their neighbors 
and, as result of flipping the loaded coin with the parameter γθ described previously, they 
can also experience starting the decline. The simulation process goes on like that for 7 time 
periods. At the end, it is practically certain that all the areas have entered fertility decline. 
This generates a dataset where we have diffusion effects additionally to the effect of 
covariates. The observed value of the Knox statistic for this dataset is equal to 362. 
According to the wrong null distribution (the permutation distribution), this is a highly 
significant value, with p-value equal to 0.001 (see Figure left hand side plot of Figure 7).   
 



 
  

Figure 7: Permutation distribution of the Knox statistic for 
the model with covariate effects. Vertical line is the 
observed value. 

 
We proceed with our bootstrap test. Now, since there is diffusion effect we expect the test 
will reject the null hypothesis, even after taking into account the presence of covariates. We 
fitted the logistic models. Incidentally, we could not get the covariate parameters estimates 
for the last two years because all areas have undergone fertility decline by then. To run the 
procedure, we just fixed the estimated parameters for the last two years equal to the last 
available parameter, that corresponding to year 5. We simulated 999 bootstrap samples for 
the onset dependent variable using the estimated coefficients and then we calculated the 
Knox statistic in each one of these datasets. The empirical distribution is that of the right 
hand side of Figure 7. The p-value is equal to 0.006, a highly significant value. This shows 
that our bootstrap testing procedure is sensitive to the presence of interaction on top of the 
covariate effects.   
 
   
      
 
    
 
 
 

 
 



 
 
 
5. ILLUSTRATION WITH BRAZILIAN DATA AND SIMULATED DATA 
 
To illustrate our methods, we use the Brazilian Demographic Census microdata from 1960, 
1970, 1980, and to calculate fertility rates along with the average levels of a number of key 
indicators of development for 518 micro-regions at each census date.  The data are based on 
a long-form questionnaire in which information on births is collected. The sampling 
fraction is 10% and 20% for municipalities with an estimated population larger and smaller 
than 15,000 inhabitants, respectively. We used the data from women from 15 to 49 years 
old grouped in five year age groups. These women provided information on the number of 
births they had in the year previous to the Census date. Generally, this information is more 
reliable to fertility studies than the birth registration system information due to severe under 
reporting in poor areas. 
  
We used three independent covariates as proxies for structural development, as well one 
ideational variable, religion.  The three structural variables were the average educational 
attainment of women of reproductive age, their labor force participation rate, and the 
proportion of households with electricity. 
 
Due to the large variance of the micro-regions areas, the choice of a neighborhood structure 
for the Brazilian map is not simple. The map in Figure 8 (to be added) shows that it is not 
appropriate to use a neighborhood definition based on a threshold distance D between the 
areas’ centroids. In the North, the areas’ centroids are separated by large distances while, in 
the South, these distances tend to be very short. An adequate threshold to create  
neighborhoods for the North region will be too large for the South part of the country. 
Hence, we defined a neighborhood structure based on adjacency between the polygons 
defining the micro-regions. That is, two micro-regions are neighbors if they share 
boundaries. With this definition, the neighborhood sizes varied from 1 to 22 neighbors, 
with quartiles equal to 5, 7, and 8.  
  
With a temporal threshold of one Census year of separation, we found an observed Knox 
statistic equal to 1285. Applying the usual permutation based distribution as the null 
distribution, we find an expected value equal to 1007.4 and a 999 randomly selected  
permutations histogram shown in the left hand side plot of Figure 9. The red vertical line is 
the observed value of the Knox statistic and it is highly significant sinde none of the 
permuted values was larger than it.  
 
We fitted the parametric survival model (1) and (2) and we found the coefficients in Table 
1. We should emphasize that we are not interested in a high quality fit of the model to the 
data but rather only on controlling for the effects of space-time varying covariates.  
 
With the coefficients fixed at the estimated values, we generated 999 bootstrap samples 
based on our survival model (cao) and (gato). Afterwards, we calculated the Knox statistic 
in each one of the bootstrap datasets and the histogram is in the right hand side plot of 
Figure 9, with the observed value of the Knox statistic as the red vertical line. We still find 



the Knox statistic highly significant. This provides some evidence that diffusion of fertility 
behavior is a possible mechanism explaining the decline on fertility in Brazil.      
 

 
Figure 9: Permutation distribution (on the left) and 
bootstrap distribution (on the right) of the Knox statistic for 
the Brazilian fertility data. The parametric bootstrap testing 
used a model with covariate effects to simulate samples 
from the null distribution. The red vertical line is the 
observed value of the test statistic. 

 
 
6. DISCUSSION AND CONCLUSION 
 
Our modification of the Knox test described here can increase the evidence weight of 
fertility diffusion studies. The uncertainty of whether a significant result is due to space-
time clustering of structural variables would no longer be present. Bocquet-Appel and 
Jakobi (1998) approach to testing for spatial diffusion using the Knox test was a major 
innovation. By resolving its major weakness with our proposed test, however, it can be 
turned into a more useful tool.  
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